Minerals of the rhönite-kuratite series in paralavas from the Choir–Nyalga basin (Central Mongolia)

database, nuove specie, discrediti,
ridefinizioni, classificazioni, ecc.
Avatar utente
Marco E. Ciriotti
Messaggi: 24897
Iscritto il: ven 25 giu, 2004 11:31
Località: via San Pietro, 55 I-10073 Devesi/Cirié TO - Italy

Minerals of the rhönite-kuratite series in paralavas from the Choir–Nyalga basin (Central Mongolia)

Messaggio da Marco E. Ciriotti » gio 26 ott, 2017 21:53

▪ Peretyazhko, I.S., Savina, E.A., Khrоmova, E.A. (2017): Minerals of the rhönite-kuratite series in paralavas from a new combustion metamorphic complex in the Choir–Nyalga basin (Central Mongolia): composition, mineral assemblages and formation conditions. Mineralogical Magazine, 81, 949-974.

This is the first description of rare minerals found in paralavas from a recently discovered combustion metamorphic complex in the Choir–Nyalga basin, Central Mongolia. The identified minerals contain strongly variable concentrations of Si, Ti, Mg, Fe2+ and Fe3+ and most commonly have compositions intermediate in a series from kuratite Ca4Fe102+Ti2O4[Si8Al4O36] and rhönite Ca4(Mg,Fe2+)8Fe23+Ti2O4[Si6Al6O36] to low-Ti kuratite and unnamed Ti-free Fe2+-analogue of rhönite Ca4Fe82+Fe43+O4[Si8Al4O36]. The minerals crystallized in residual Si-Al-K and Si-Al-Ca-Fe immiscible melts after spinel, anorthite–bytownite, melilite, Al-clinopyroxene ± Mg-Fe olivine, together with Fe3+-bearing hercynite, Ca-rich fayalite, kirschsteinite, pyrrhotite ± native iron, wüstite, magnetite, celsian, hyalophane, Ba-orthoclase and fresnoite, but before nepheline ± kalsilite, and later sulfates, carbonates, an unidentified ‘X-mineral’ close to Al- and Fe-rich tobermorite and goethite. Micro-Raman spectroscopy of kuratite shows five bands near 133–155 (strong), 399–401, 545–566, 684–693 (strongest) and 828–839 cm−1.
The kuratite-bearing Nyalga paralavas have bulk compositions with MgO/(MgO+FeO+Fe2O3), mol.% ∼0.5 and a CIPW normative ratio of Ne/(Ne+Lc) = 0.23–0.76. Minerals of the rhönite–kuratite series formed during paralava crystallization at ∼1100°C. The diversity of the paralava mineral assemblages might result from local composition variations of Ca-rich silica-undersaturated melts derived from Fe-bearing carbonate-silicate sediments which were affected by nearby coal combustion sources at reducing conditions (IW-WM-QFM buffers) and at a nearly atmospheric pressure.
Marco E. Ciriotti

«Things are interesting only in so far as they relate themselves to other things»


Chi c’è in linea

Visitano il forum: Bing [Bot] e 4 ospiti