Crystal chemistry of rathite based on new electron-microprobe data and single-crystal structure refinements

database, nuove specie, discrediti,
ridefinizioni, classificazioni, ecc.
Avatar utente
Marco E. Ciriotti
Messaggi: 24826
Iscritto il: ven 25 giu, 2004 11:31
Località: via San Pietro, 55 I-10073 Devesi/Cirié TO - Italy

Crystal chemistry of rathite based on new electron-microprobe data and single-crystal structure refinements

Messaggio da Marco E. Ciriotti » gio 18 ott, 2018 15:56

▪ Topa, D. & Kolitsch, U. (2018): The Crystal Chemistry of Rathite Based on New Electron-Microprobe Data and Single-Crystal Structure Refinements: The Role of Thallium. Minerals, 8, 466;

Crystal-structure refinements in space group P21/c were performed on five grains of rathite with different types and degrees of thallium, silver, and antimony substitutions, as well as quantitative electron-microprobe analyses of more than 800 different rathite samples. The results of these studies both enlarged and clarified the complex spectrum of cation substitutions and the crystal chemistry of rathite. The [Tl+ + As3+] ↔ 2Pb2+ scheme of substitution acts at the structural sites Pb1, Pb2, and Me6, the [Ag+ + As3+] ↔ 2Pb2+ substitution at Me5, and the Sb-for-As substitution at the Me3 site only. The homogeneity range of rathite was determined to be unusually large, ranging from very Tl-poor compositions (0.16 wt%; refined single-crystal unit-cell parameters: a = 8.471(2), b = 7.926(2), c = 25.186(5) Å, β = 100.58(3)°, V = 1662.4(6) Å3) to very Tl-rich compositions (11.78 wt%; a = 8.521(2), b = 8.005(2), c = 25.031(5) Å, β = 100.56(3)°, V = 1678.4(6) Å3). The Ag content is only slightly variable (3.1 wt%–4.1 wt%) with a mean value of 3.6 wt%. The Sb content is strongly variable (0.20 wt%–7.71 wt%) and not correlated with the Tl content. With increasing Tl content (0.16 wt%–11.78 wt%), a clear increase of the unit-cell parameters a, b, and V, and a slight decrease of c is observed, although this is somewhat masked by the randomly variable Sb content. The revised general formula of rathite may be written as AgxTlyPb16−2(x+y)As16+x+y−zSbzS40 (with 1.6 < x < 2, 0 < y < 3, 0 < z < 3.5). Based on Pb–S bond lengths, polyhedral characteristics and Pb-site bond-valence sums, we conclude that the Pb1 site is more affected by Tl substitution than the Pb2 site. When Tl substitution reaches values above 13 wt% (or 3 apfu), a new phase (“SR”), belonging to the rahite group, appears as lamellar exsolution intergrowths with Tl-rich rathite (11.78 wt%). Rathite is found only in the Lengenbach and Reckibach deposits, Binntal, Canton Wallis, Switzerland.
Marco E. Ciriotti

«Things are interesting only in so far as they relate themselves to other things»


Chi c’è in linea

Visitano il forum: Nessuno e 2 ospiti