History of the Breivikbotn silicocarbonatite, Seiland Igneous Province in Northern Norway

database, nuove specie, discrediti,
ridefinizioni, classificazioni, ecc.
Avatar utente
Marco E. Ciriotti
Messaggi: 27099
Iscritto il: ven 25 giu, 2004 11:31
Località: via San Pietro, 55 I-10073 Devesi/Cirié TO - Italy

History of the Breivikbotn silicocarbonatite, Seiland Igneous Province in Northern Norway

Messaggio da Marco E. Ciriotti » mar 20 nov, 2018 15:30

▪ Zozulya, D.R., Kullerud, K., Ravna, E.K., Savchenko, Y.E., Selivanova, E.A., Timofeeva, M.G. (2018): Mineralogical and Geochemical Constraints on Magma Evolution and Late-Stage Crystallization History of the Breivikbotn Silicocarbonatite, Seiland Igneous Province in Northern Norway: Prerequisites for Zeolite Deposits in Carbonatite Complexes. Minerals, 8, 537; https://doi.org/10.3390/min8110537.

The present work reports on new mineralogical and whole-rock geochemical data from the Breivikbotn silicocarbonatite (Seiland igneous province, North Norway), allowing conclusions to be drawn concerning its origin and the role of late fluid alteration. The rock shows a rare mineral association: calcite + pyroxene + amphibole + zeolite group minerals + garnet + titanite, with apatite, allanite, magnetite and zircon as minor and accessory minerals, and it is classified as silicocarbonatite. Calcite, titanite and pyroxene (Di36–46 Acm22–37 Hd14–21) are primarily magmatic minerals. Amphibole of mainly hastingsitic composition has formed after pyroxene at a late-magmatic stage. Zeolite group minerals (natrolite, gonnardite, Sr-rich thomsonite-(Ca)) were formed during hydrothermal alteration of primary nepheline by fluids/solutions with high Si-Al-Ca activities. Poikilitic garnet (Ti-bearing andradite) has inclusions of all primary minerals, amphibole and zeolites, and presumably crystallized metasomatically during a late metamorphic event (Caledonian orogeny). Whole-rock chemical compositions of the silicocarbonatite differs from the global average of calciocarbonatites by elevated silica, aluminium, sodium and iron, but show comparable contents of trace elements (REE, Sr, Ba). Trace element distributions and abundances indicate within-plate tectonic setting of the carbonatite. The spatial proximity of carbonatite and alkaline ultramafic rock (melteigite), the presence of “primary nepheline” in carbonatite together with the trace element distributions indicate that the carbonatite was derived by crystal fractionation of a parental carbonated foidite magma. The main prerequisites for the extensive formation of zeolite group minerals in silicocarbonatite are revealed.
Marco E. Ciriotti

«Things are interesting only in so far as they relate themselves to other things»


Chi c’è in linea

Visitano il forum: Google [Bot] e 12 ospiti