Discovery of the first natural hydride

database, nuove specie, discrediti,
ridefinizioni, classificazioni, ecc.
Rispondi
Avatar utente
Marco E. Ciriotti
Messaggi: 25787
Iscritto il: ven 25 giu, 2004 11:31
Località: via San Pietro, 55 I-10073 Devesi/Cirié TO - Italy
Contatta:

Re: Discovery of the first natural hydride

Messaggio da Marco E. Ciriotti » ven 25 gen, 2019 9:49

Prossima pubblicazione.

Referenza:
▪ Bindi, L., Cámara, F., Griffin, W.L., Huang, J.-X., Gain, S.E.M., Toledo, V., O’Reilly, S. (2019): Discovery of the first natural hydride. American Mineralogist, 104, (in press).
Marco E. Ciriotti

«Things are interesting only in so far as they relate themselves to other things»

Avatar utente
Marco E. Ciriotti
Messaggi: 25787
Iscritto il: ven 25 giu, 2004 11:31
Località: via San Pietro, 55 I-10073 Devesi/Cirié TO - Italy
Contatta:

Re: Discovery of the first natural hydride

Messaggio da Marco E. Ciriotti » ven 12 apr, 2019 14:08

Pubblicazione effettuata.

Referenza:
▪ Bindi, L., Cámara, F., Griffin, W.L., Huang, J.-X., Gain, S.E.M., Toledo, V., O’Reilly, S. (2019): Discovery of the first natural hydride. American Mineralogist, 104, 611–614.

Abstract:
Although hydrogen is the most abundant element in the solar system, the mechanisms of exchange of this element between the deep interior and surface of Earth are still uncertain. Hydrogen has profound effects on properties and processes on microscopic-to-global scales. Here we report the discovery of the first hydride (VH2) ever reported in nature. This phase has been found in the ejecta of Cretaceous pyroclastic volcanoes on Mt Carmel, N. Israel, which include abundant xenoliths containing highly reduced mineral assemblages. These xenoliths were sampled by their host magmas at different stages of their evolution but are not genetically related to them. The xenoliths are interpreted as the products of extended interaction between originally mafic magmas and CH4+H2 fluids, derived from a deeper, metal-saturated mantle. The last stages of melt evolution are recorded by coarse-grained aggregates of hibonite (CaAl12O19) + grossite (CaAl4O7) + V-rich spinels ± spheroidal to dendritic inclusions of metallic vanadium (V0), apparently trapped as immiscible metallic melts. The presence of V0 implies low oxygen fugacities and suggests crystallization of the aggregates in a hydrogen-rich atmosphere. The presence of such reducing conditions in the upper mantle has major implications for the transport of carbon, hydrogen and other volatile species from the deep mantle to the surface.

NdR: per chi fosse interessato è disponibile il PDF. Richiederlo a: m.ciriotti@tin.it
Marco E. Ciriotti

«Things are interesting only in so far as they relate themselves to other things»

Rispondi

Chi c’è in linea

Visitano il forum: Nessuno e 5 ospiti