Water in the Earth’s lower mantle

database, nuove specie, discrediti,
ridefinizioni, classificazioni, ecc.
Rispondi
Avatar utente
Marco E. Ciriotti
Messaggi: 25808
Iscritto il: ven 25 giu, 2004 11:31
Località: via San Pietro, 55 I-10073 Devesi/Cirié TO - Italy
Contatta:

Water in the Earth’s lower mantle

Messaggio da Marco E. Ciriotti » gio 10 gen, 2019 14:54

Referenza:
▪ Kaminsky, F.V. (2018): Water in the Earth’s Lower Mantle. Geochemistry International, 56, 1117-1134.

Abstract:
All major, rock-forming lower-mantle minerals (bridgmanite, CaSi-perovskite, "ferropericlase" and stishovite) are “nominally anhydrous minerals” (NAMs), in which hydrogen comprises less than 1 wt % and whose chemical formula would be normally written without hydrogen. In NAMs, hydrogen occupies various defects of the crystal lattice and is bonded to structural oxygen, forming hydroxyl groups. Currently, two main techniques can be used for water determination in the mantle minerals: Fourier transform infrared spectrometry (FTIR) and secondary ion mass spectrometry (SIMS). They produce different results: determinations by SIMS are usually higher than quantifications of FTIR. As a result, the estimates of water concentrations in lower-mantle minerals vary widely. Most reliable concentrations of water are 1400–1800 ppm in bridgmanite, 10–80 ppm in "ferropericlase", and 20–150 ppm in stishovite. The average concentration of water in the lower mantle is ~1500 ppm. Despite such minor concentrations in lower-mantle minerals, water forms a great reservoir within the lower mantle, probably amounting ~45.45 × 1023 grams H2O, i.e., ~3.3 times the mass of the Earth’s oceans. Some amount of water is transported into the lower mantle by subducting lithospheric slabs; this amount is balanced by the water flux from the lower mantle to the transition zone. Within areas of partial melting in the lower and upper parts of the lower mantle, as well as in some local areas, stress and thermal increase initiate release of water from lower-mantle minerals into melt. The enrichment of partial melts with H2O depends on the P–T conditions, oxygen fugacity values, and percentage of melting. It causes major geodynamic processes that are initiated within the deep Earth. The major source of the water reservoir in the lower mantle is primordial water stored early in the Earth’s evolution.
Marco E. Ciriotti

«Things are interesting only in so far as they relate themselves to other things»

Rispondi

Chi c’è in linea

Visitano il forum: Bing [Bot] e 2 ospiti