Nanoscale constraints on the shock-induced transformation of zircon to reidite

database, nuove specie, discrediti,
ridefinizioni, classificazioni, ecc.
Rispondi
Avatar utente
Marco E. Ciriotti
Messaggi: 25787
Iscritto il: ven 25 giu, 2004 11:31
Località: via San Pietro, 55 I-10073 Devesi/Cirié TO - Italy
Contatta:

Nanoscale constraints on the shock-induced transformation of zircon to reidite

Messaggio da Marco E. Ciriotti » dom 10 feb, 2019 11:26

Referenza:
▪ Reddy, S.M., Saxey, D.W., Rickard, W.D.A., Fougerouse, D., Quadir, Z., Johnson, T.E. (2019): Nanoscale constraints on the shock-induced transformation of zircon to reidite. Chemical Geology, 507, 85-95.

Abstract
In a hypervelocity impact event, the temperatures and pressures generated by the shock waves far exceed the values produced by endogenic processes. The shock-induced processes can modify the distribution of trace elements in zircon grains located in target rocks, potentially affecting the geochemical reliability of zircon, but also providing an opportunity to better understand the mechanisms of shock deformation. The formation of reidite lamellae by the shock-induced phase change of zircon has previously been proposed to be a diffusionless, martensitic transformation, with no associated atomic mobility over nanometre length scales. However, nanoscale characterization of the zircon–reidite interface and a low-angle boundary within the reidite by atom probe tomography, transmission electron microscopy and correlative analytical techniques, shows localised enrichment of particular trace elements (Y, Al, Ca, Be, Mg, Mn, and Ti). These observations indicate the presence of additional short-range diffusional components to explain the local compositional variations observed at the nanoscale for the high-pressure transformation of zircon to reidite lamellae. A new model for this transformation is proposed that consists of two stages: 1) the early stage of the impact event where the shock waves induce defects in the zircon grain and trigger a phase transformation, resulting in trace element segregation by interface migration; and 2) the recovery stage where the trace elements and shock induced defects migrate to areas of lower energy.
Marco E. Ciriotti

«Things are interesting only in so far as they relate themselves to other things»

Rispondi

Chi c’è in linea

Visitano il forum: Nessuno e 3 ospiti